
Isolating Functions at the Hardware Limit with Virtines
Nicholas C. Wanninger*

ncw@u.northwestern.edu
Northwestern University
Evanston, Illinois, USA

Joshua J. Bowden
jbowden@hawk.iit.edu

Illinois Institute of Technology
Chicago, Illinois, USA

Kirtankumar Shetty
kshetty11@hawk.iit.edu

Illinois Institute of Technology
Chicago, Illinois, USA

Ayush Garg
agarg22@hawk.iit.edu

Illinois Institute of Technology
Chicago, Illinois, USA

Kyle C. Hale
khale@cs.iit.edu

Illinois Institute of Technology
Chicago, Illinois, USA

Abstract
An important class of applications, including programs that
leverage third-party libraries, programs that use user-defined
functions in databases, and serverless applications, benefit
from isolating the execution of untrusted code at the granular-
ity of individual functions or function invocations. However,
existing isolation mechanisms were not designed for this
use case; rather, they have been adapted to it. We introduce
virtines, a new abstraction designed specifically for function
granularity isolation, and describe how we build virtines from
the ground up by pushing hardware virtualization to its lim-
its. Virtines give developers fine-grained control in deciding
which functions should run in isolated environments, and
which should not. The virtine abstraction is a general one,
and we demonstrate a prototype that adds extensions to the C
language. We present a detailed analysis of the overheads of
running individual functions in isolated VMs, and guided by
those findings, we present Wasp, an embeddable hypervisor
that allows programmers to easily use virtines. We describe
several representative scenarios that employ individual func-
tion isolation, and demonstrate that virtines can be applied in
these scenarios with only a few lines of changes to existing
codebases and with acceptable slowdowns.

CCS Concepts: • Security and privacy → Virtualization
and security; • Software and its engineering → Software
architectures; Language features; Runtime environments.

Keywords: virtines, virtualization, isolation

ACM Reference Format:
Nicholas C. Wanninger, Joshua J. Bowden, Kirtankumar Shetty,
Ayush Garg, and Kyle C. Hale. 2022. Isolating Functions at the
Hardware Limit with Virtines. In Seventeenth European Conference

*A majority of this work was done while at Illinois Institute of Technology.

EuroSys ’22, April 5–8, 2022, RENNES, France
© 2022 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
Seventeenth European Conference on Computer Systems (EuroSys ’22), April
5–8, 2022, RENNES, France, https://doi.org/10.1145/3492321.3519553.

on Computer Systems (EuroSys ’22), April 5–8, 2022, RENNES,
France. ACM, New York, NY, USA, 19 pages. https://doi.org/10.
1145/3492321.3519553

1 Introduction
Vulnerabilities in critical applications can lead to information
leakage, data corruption, control-flow hijacking, and other
malicious activity. If vulnerable applications run with elevated
privileges, the entire system may be compromised [4, 7]. Sys-
tems that execute code from untrusted sources must then
employ isolation mechanisms to ensure data secrecy, data
integrity, and execution integrity for critical software infras-
tructure [20, 25, 27, 31–33, 51, 56–58, 71, 72]. This isolation
typically happens in a coarse-grained fashion, but an impor-
tant class of applications require isolation at the granularity of
individual functions or distinct invocations of such functions.
Long-standing examples include the use of untrusted library
functions by critical applications and user-defined functions
(UDFs) in databases, while serverless functions represent an
important emerging example. Existing isolation mechanisms,
however, were not designed for individual functions. Appli-
cations that leverage this isolation model must resort to re-
purposing off-the-shelf mechanisms with mismatched design
goals to suit their needs. For example, databases limit UDFs
to run in a managed language like Java or Javascript [29, 63],
and serverless platforms repurpose containers to isolate users’
stateless function invocations from one another. The latter
example is particularly salient today. As others have shown
at this venue, formidable challenges (particularly cold-start
latency) arise when using containers for individual function
execution [21]. These challenges stem from contorting the
container abstraction to fit an unintended usage model.

Guided by these examples, we introduce virtines, a new
abstraction designed for isolating execution at function call
granularity using hardware virtualization. Data touched by
a virtine is automatically encapsulated in the virtine’s iso-
lated execution environment. This environment implements
an abstract machine model that is not constrained by the tradi-
tional x86 platform. Virtines can seamlessly interact with the
host environment through a checked hypervisor interposition
layer. With virtines, programmers annotate critical functions

1

https://doi.org/10.1145/3492321.3519553
https://doi.org/10.1145/3492321.3519553
https://doi.org/10.1145/3492321.3519553

EuroSys ’22, April 5–8, 2022, RENNES, France N. Wanninger, J. Bowden, K. Shetty, A. Garg, and K. Hale

in their code using language extensions, with the semantics
that a single virtine will run in its own, isolated virtual ma-
chine environment. While virtines require code changes, these
changes are minimal and easy to understand. Our current lan-
guage extensions are for C, but we believe they can be adapted
to most languages.

The execution environments for virtines (including parts
of the hypervisor) are tailored to the code inside the isolated
functions; a virtine image contains only the software that a
function needs. We present a detailed, ground-up analysis
of the start-up costs for virtine execution environments, and
apply our findings to construct small and efficient virtine im-
ages. Virtines can achieve isolated execution microsecond
scale startup latencies and limited slow-down relative to na-
tive execution. They are supported by a custom, user-space
runtime system implemented using hardware virtualization
called Wasp, which comprises a small, embeddable hypervi-
sor that runs on both Linux and Windows. The Wasp runtime
provides mechanisms to enforce strong virtine isolation by
default, but isolation policies can be customized by users.

Our contributions in this paper are as follows:

• We introduce virtines, programmer-guided abstractions
that allow individual functions to run in light-weight,
virtualized execution environments.

• We present a prototype embeddable hypervisor frame-
work, Wasp, that implements the virtine abstraction.
Wasp runs as a Type-II micro-hypervisor on both Linux
and Windows.

• We provide language extensions for programming with
virtines in C that are conceptually simple.

• We evaluate Wasp’s performance using extensive mi-
crobenchmarking, and perform a detailed study of the
costs of virtine execution environments.

• We demonstrate that it requires minimal effort to incor-
porate virtines into software components used in repre-
sentative scenarios involving function isolation: namely,
untrusted or sensitive library functions (OpenSSL) and
managed language runtimes (Javascript). The virtine
versions incur acceptable slow-down while using strong
hardware isolation.

2 Virtines
A virtine provides an isolated execution environment using
lightweight virtualization. Virtines consist of three compo-
nents: a toolchain-generated binary to run in a virtual context,
a hypervisor that facilitates the VM’s only external access
(Wasp), and a host program which specifies virtine isolation
policies and drives Wasp to create virtines. When invoked,
virtines run synchronously from the caller’s perspective, lead-
ing them to appear and act like a regular function invocation.

However, virtines could, given support in the hypervisor, be-
have like asynchronous functions or futures.1 As with most
code written to execute in a different environment from the
host, such as CUDA code [59] or SGX enclaves [69], there
are constraints on what virtine code can and cannot do. Due
to their isolated nature, virtines have no direct access to the
caller’s environment (global variables, heap, etc.). A virtine
can, however, accept arguments and produce return values
like any normal function. These arguments and return values
are marshalled automatically by the virtine compiler when
using our language extensions.2

Unlike traditional hypervisors, a virtine hypervisor need
not–and we suspect in most cases will not–emulate every part
of the x86 platform, such as PCI, ACPI, interrupts, or legacy
I/O. A virtine hypervisor therefore implements an abstract
machine model designed for and restricted to the intentions of
the virtine. Figure 1 outlines the architecture and data access
capabilities (indicated by the arrows) of a virtine compared
to a traditional process abstraction. A host program that uses
(links against) the embeddable virtine hypervisor has some,
but not necessarily all, of its functions run as virtines. We refer
to such a host process as a virtine client. If the virtine context
wishes to access any data or service outside of its isolated
environment, it must first request access from the client via
the hypervisor. Virtines exist in a default-deny environment,
so the hypervisor must interpose on all such requests. While
the hypervisor provides the interposition mechanism [17], the
virtine client has the option to implement a hypercall policy,
which determines whether or not an individual request will
be serviced. The capabilities of a virtine are determined by
(1) the hypervisor, (2) the runtime within a virtine image, and
(3) policies determined by the virtine client.

Virtines are constructed from a subset of an application’s
call graph. Currently, the decision where the “cut” in the call
graph is made by the programmer, but making this choice au-
tomatically in the compiler is possible [46, 51]. Since a virtine
constitutes only a subset of the call graph, virtine images are
typically small (∼16KB), and are statically compiled binaries
containing all required software. Shared libraries violate our
isolation requirements, as we will see in Section 3.1.

While the runtime environment that underlies a function
running in virtine context can vary, we expect that in most
cases this environment will comprise a limited, kernel-mode
only, software layer. This may mean no scheduler, virtual
memory, processes, threads, file systems, or any other high-
level constructs that typically come with running a fully-
featured VM. This is not, however, a requirement, and virtines
can take advantage of hardware features like virtual mem-
ory, which can lead to interesting optimizations like those

1For example, like goroutines, as in Gotee [28]: https://gobyexample.com/
goroutines
2When using the virtine runtime library directly, developers must currently
marshal arguments and return values manually, though we are currently
developing an IDL to ease this process (like SGX’s EDL [36]).

2

https://gobyexample.com/goroutines
https://gobyexample.com/goroutines

Isolating Functions at the Hardware Limit with Virtines EuroSys ’22, April 5–8, 2022, RENNES, France

Figure 1. How virtines fit into the software stack.

in Dune [18]. Additional functionality must be provided by
adding the functionality to the virtine environment or by bor-
rowing functionality from the hypervisor. Adding this func-
tionality should be done with care, as interactions with the
hypervisor come with costs, both in terms of performance
and isolation. In this paper, we provide two pre-built virtine
execution environments (Section 5.4), but we envision a rich
virtine ecosystem could develop from which an execution
environment could be selected. These environments could
also be synthesized automatically. Note that one possible
execution environment for a virtine is a unikernel. However,
unikernels are typically designed with a standard ABI in mind
(e.g., binary compatible with Linux). Virtine execution en-
vironments are instead co-designed with the virtine client,
and allow for a wide variety of virtual platforms which may
support non-standard ABIs.

3 Design
In this section, we describe our isolation and safety objectives
in developing the virtine abstraction. We then discuss how to
achieve these goals using hardware and software mechanisms.

3.1 Safety Objectives
Host execution and data integrity. Host code and data

cannot be modified, and its control flow cannot be hijacked
by a virtine running untrusted or adversarial code.

Virtine execution and data integrity. The private state of
a virtine must not be affected by another virtine running
untrusted or adversarial code. Thus, data secrecy must be
maintained between virtines.

Virtine isolation. Host data secrecy must also be main-
tained, so virtines may not interact with any data or services
outside of their own address space other than what is explicitly
permitted by the virtine client’s policies.

These objectives are similar to sandboxing in web browsers,
where some components (tabs, extensions) within the same
address space are untrusted, meaning that intra-application in-
teractions must cross isolation boundaries. In Google Chrome,
for example, process isolation and traditional security restric-
tions are used to achieve this isolation [1, 50]. Unfortunately,

as with most software, bugs have allowed attackers to access
user data, execute arbitrary code, or just crash the browser
with carefully crafted JavaScript [2, 3, 5, 6, 8].

3.2 Threat Model
Code that runs in virtine context can still suffer from software
bugs such as buffer overflow vulnerabilities. We therefore
assume an adversarial model, where attacks that arise from
such bugs may occur, and where a virtine can behave mali-
ciously. We assume the hypervisor (Wasp) and the host kernel
are trusted, similar to prior work [14]. In addition, we assume
that the virtine client—in particular, its hypercall handlers—
are trusted and implemented correctly. These handlers must
take care to assume that inputs have not been properly san-
itized, and may even be intentionally manipulated. Along
with using best practices, we assume hypercall handlers are
careful when accessing the resources mapped to a virtine, for
example checking memory bounds before accessing virtine
memory, validating potentially unsafe arguments, and cor-
rectly following the access model that the virtine requires.
We assume that virtines do not share state with each other
via shared mappings, and that they cannot directly access
host memory. Additionally, we assume that microarchitec-
tural and host kernel mitigations are sufficient to eliminate
side channel attacks. Note that we do not expect end users to
implement their own virtine clients. We instead assume that
runtime experts will develop the virtine clients (and corre-
sponding hypercall handlers). In this sense, our assumptions
about the virtine client’s integrity are similar to those made in
cloud platforms that employ a user-space device model (e.g.,
QEMU/KVM).

3.3 Achieving Safety Objectives
Host execution integrity. By assuming that both the hyper-

visor and client-defined hypercall handlers (of which there
are few) are carefully implemented, using best practices of
software development, an adversarial virtine cannot directly
modify the state or code paths of the host. However, virtines
do not guarantee that if permitted access to certain hypercalls
or secret data, an attacker cannot utilize these hypercalls to
exfiltrate sensitive data via side-channel mechanisms. This,
however, can be mitigated by using a mechanism that disables
certain hypercalls dynamically when they are not needed by
the runtime, further restricting the attack surface.

Virtine execution integrity. Requiring that no two virtines
directly share memory without first receiving permission from
the hypervisor (e.g., via the hypercall interface) ensures data
secrecy within the virtine. Each virtine must have its own
set of private data which must be disjoint from any other
virtine’s set. Thus, a virtine that runs untrusted or malicious
code cannot affect the integrity of other virtines.

Isolation. Modeling virtine and host private state as a dis-
joint set disallows any and all shared state between virtines or

3

EuroSys ’22, April 5–8, 2022, RENNES, France N. Wanninger, J. Bowden, K. Shetty, A. Garg, and K. Hale

the host. The hardware’s use of nested paging (EPT in VT-x)
prevents such access at a hardware level. Also, by assuming
that hypercalls are carefully implemented, and that they only
permit operations required by the application, we achieve
isolation from states and services outside the virtine.

4 Minimizing Virtine Costs
Before exploring the implementation of virtines, we first de-
scribe a series of experiments that guided their design. These
experiments establish the creation costs of minimal virtual
contexts and of the execution environments used within those
contexts. Our goal is to establish what forms of overhead will
be most significant when creating a virtine.

4.1 Experimental Setup
The majority of our Linux and KVM experiments were run
on tinker, an AMD EPYC 7281 (Naples; 16 cores; 2.69 GHz)
machine with 32 GB DDR4 running stock Linux kernel ver-
sion 5.9.12. We disabled hyperthreading, turbo boost, and
DVFS to mitigate measurement noise. We used a Dell XPS
9500 with an Intel i7 10750H (Comet Lake; 6 cores) for SGX
measurements. This machine has 32 GB DDR4 and runs stock
Ubuntu 20.04 (kernel version 5.13.0-28). We used gcc 10.2.1
to compile Wasp (C/C++), clang 10.0.1 for our C-based vir-
tine language extensions, and NASM v2.14 for assembly-only
virtines. Unless otherwise noted, we conduct experiments
with 1000 trials. Note that our hypervisor implementation
works on both Linux and has a prototype implementation in
Windows (through Hyper-V), but for brevity we only show
KVM’s performance on Linux, as Hyper-V performance was
similar for our experiments.

4.2 Measuring Startup Costs
We probe the costs of virtual execution contexts and see how
they compare to other types of execution contexts. To estab-
lish baseline creation costs, we measure how quickly various
execution contexts can be constructed on tinker, as shown in
Figure 2. We measure the time it takes to create, enter, and
exit from the context in a way that the hypervisor can observe.
In “KVM”, we observe the latency to construct a virtual ma-
chine and call the hlt instruction. “Linux pthread” is simply
a pthread_create call followed by pthread_join. The
“vmrun” measurement is the cost of running a VM hosted on
KVM without the cost of creating its associated state, i.e.,
only the KVM_RUN ioctl. Finally, “function” is the cost of
calling and returning from a null function. All measurements
are obtained using the rdtsc instruction.

Lower bounds. The “vmrun” measurements represent the
lowest latency we could achieve to begin execution in a virtual
context using KVM in Linux 5.9. This latency includes the
cost of the ioctl system call, which in KVM is handled
with a series of sanity checks followed by execution of the
vmrun instruction. Several optimizations can be made to the

Figure 2. Lower bounds on execution context creation in
cycles (measured with rdtsc).

Component KVM

Paging identity mapping 28109
Protected transition 3217
Long transition (lgdt) 681
Jump to 32-bit (ljmp) 175
Jump to 64-bit (ljmp) 190
Load 32-bit GDT (lgdt) 4118
First Instruction 74

Table 1. Boot time breakdown for our minimal runtime en-
vironment on KVM. These are minimum latencies observed
per component, measured in cycles.

hypervisor to reduce the cost of spawning new contexts and
lower the latency of a virtine, which we outline in Section 5.2.

These measurements tell us that while a virtine invocation
will be unsurprisingly more expensive than a native function
call, it can compete with thread creation and will far outstrip
any start-up performance that processes (and by proxy, con-
tainers) will achieve in a standard Linux setting. We conclude
that the baseline cost of creating a virtual context is relatively
inexpensive compared to the cost of other abstractions.

Eliminating traditional boot sequences. The boot sequences
of fully-featured OSes are too costly to include on the crit-
ical path for low-latency function invocations [21, 41, 55].
It takes hundreds of milliseconds to boot a standard Linux
VM using QEMU/KVM. To understand why, we measured
the time taken for components of a vanilla Linux kernel boot
sequence and found that roughly 30% of the boot process is
spent scanning ACPI tables, configuring ACPI, enumerating
PCI devices, and populating the root file system. Most of
these features, such as a fully-featured PCI interface, or a net-
work stack, are unnecessary for short-lived, virtual execution
environments, and are often omitted from optimized Linux
guest images such as the Alpine Linux image used for Ama-
zon’s Firecracker [13]. Caching pre-booted environments can
further mitigate this overhead, as we describe in §5.2.

In light of the data gathered in Figure 2, we set out to
measure the cost of creating a virtual context and configuring
it with the fewest operations possible. To do this, we built
a simple wrapper around the KVM interface that loads a
binary image compiled from roughly 160 lines of assembly.

4

Isolating Functions at the Hardware Limit with Virtines EuroSys ’22, April 5–8, 2022, RENNES, France

Figure 3. Latency to run a function in the three classic operat-
ing modes on x86. Note the use of a false origin to highlight
relative differences.

This binary closely mirrors the boot sequence of a classic
OS kernel: it configures protected mode, a GDT, paging, and
finally jumps to 64-bit code. These operations are outlined in
Table 1, which indicates the minimum latencies (cycles) for
each component, ordered by cost.

The row labeled “Paging/ident. map” is by far the most
expensive at ∼28K cycles. Here we are using 2MB large pages
to identity map the first 1GB of address space, which entails
three levels of page tables (i.e., 12KB of memory references),
plus the actual installation of the page tables, control register
configuration, and construction of an EPT inside KVM. The
transition to protected mode takes the second longest, at 3K
cycles. This is a bit surprising, given that this only entails
the protected mode bit flip (PE, bit 0) in cr0. The transition
to long mode (which takes several hundreds of cycles) is
less significant. The remaining components—loading a 32-bit
GDT, the long jumps to complete the mode transitions, and
the initial interrupt disable—are negligible.

The cost of processor modes. The more complex the mode
of execution (16, 32, or 64 bits), the higher the latency to
get there. This is consistent with descriptions in the hard-
ware manuals [15, 37]. To further investigate this effect, we
invoked a small binary written in assembly that brings the
virtual context up to a particular x86 execution mode and exe-
cutes a simple function (fib of 20 with a simple, recursive
implementation). Figure 3 shows our findings for the three
canonical modes of the x86 boot process using KVM: 16-bit
(real) mode, 32-bit (protected) mode, and 64-bit (long) mode.
Each mode includes the necessary components from Table 1
in the setup of the virtual context. In this experiment, for
each mode of execution, we measured the latency in cycles
from the time we initiated an entry on the host (KVM_RUN), to
the time it took to bring the machine up to that mode in the
guest (including the necessary components listed in Table 1),
run 𝑓 𝑖𝑏 (20), and exit back to the host. These measurements
include entry, startup cost, computation, and exit. Note that
we saw several outliers in all cases, likely due to host kernel

Figure 4. Latency for echo server startup milestones in pro-
tected mode (no paging).

scheduling events. To make the data more interpretable, we
removed these outliers.3

While we expect much of the time to be dominated by en-
try/exit and the arithmetic, the benefits of real-mode only exe-
cution for our hand-written version are clear. The difference
between 16-bit and 32-bit environments are not surprising.
The most significant costs listed in Table 1 are not incurred
when executing in 16-bit mode. Protected and Long mode
execution are essentially the same as they both include those
costs (paging and protected setup). These results suggest—
provided that the virtine is short-lived (on the order of mi-
croseconds) and can feasibly execute in real-mode—that 10K
cycles may potentially be saved.

Booting up for useful code. We have seen that a minimal
long-mode boot sequence costs less than 30K cycles (∼12 𝜇s),
but what does it take to do something useful? To determine
this, we implemented a simple HTTP echo server where each
request is handled in a new virtual context employing our
minimal environment. We built a simple micro-hypervisor in
C++ and a runtime environment that brings the machine up to
C code and uses hypercall-based I/O to echo HTTP requests
back to the sender. The runtime environment comprises 970
lines of C (a large portion of which are string formatting rou-
tines) and 150 lines of x86 assembly. The micro-hypervisor
comprises 900 lines of C++. The hypercall-based I/O (de-
scribed more in Section 5.1) obviates the need to emulate
network devices in the micro-hypervisor and implement the
associated drivers in the virtual runtime environment, sim-
plifying the development process. Figure 4 shows the mean
time measured in cycles to pass important startup milestones
during the bring-up of the server context. The left-most point
indicates the time taken to reach the server context’s main
entry point (C code); roughly 10K cycles. Note that this ex-
ample does not actually require 64-bit mode, so we omit
paging and leave the context in protected mode. The middle
point shows the time to receive a request (the return from
recv()), and the last point shows the time to complete the
response (send()). Milestone measurements are taken inside
the virtual context.

The send and receive functions for this environment use
hypercalls to defer to the hypervisor, which proxies them to
the Linux host kernel using the appropriate system calls. Even

3That is, using Tukey’s method, measurements not on the interval [𝑥25% −
1.5 𝐼𝑄𝑅, 𝑥75% + 1.5 𝐼𝑄𝑅] are removed from the data.

5

EuroSys ’22, April 5–8, 2022, RENNES, France N. Wanninger, J. Bowden, K. Shetty, A. Garg, and K. Hale

user

virtine
func	1

virtine
func	2

virtine
func	n

Hyper-V driver

…

WHvRunVirtualProcessor()

kvm APIKVM API Hyper-V API

Linux kernel Windows NT kernel

VT-x/SVM
hardware

kernel

or

or

KVM driver

ioctl(KVM_RUN)
wasp

wasp client client hypercall
handler

client hypercall
handlervirtine creation

requests

Figure 5. High-level overview of Wasp.

when leveraging the underlying host OS, and when adding
the from-scratch virtual context creation time from Figure 2,
we can achieve sub-millisecond HTTP response latencies
(<300 𝜇s) without optimizations (§5.2). Thus, we can infer
that despite the cost of creating a virtual context, having
few host/virtine interactions can keep execution latencies in a
virtual context within an acceptable range. Note, however, that
the guest-to-host interactions in this test introduce variance
from the host kernel’s network stack, indicated by the large
standard deviations shown in Figure 4.

These results are promising, and they indicate that we can
achieve low overheads and start-up latencies for functions that
do not require a heavy-weight runtime environment. We use
three key insights from this section to inform the design of our
virtine framework in the next section: (1) creating hardware
virtualized contexts can be cheap when the environment is
small, (2) tailoring the execution environment (for example,
the processor mode) can pay off, and (3) host interactions can
be facilitated with hypercalls (rather than shared memory),
but their number must be limited to keep costs low.

5 Implementation
In this section, we present Wasp, a prototype hypervisor de-
signed for the creation and management of virtine environ-
ments. We also cover a few of the optimizations designed to
overcome the cost of creating virtual contexts using KVM.

5.1 Wasp
Wasp is a specialized, embeddable micro-hypervisor runtime
that deploys virtines with an easy-to-use interface. Wasp runs
on Linux and Windows. At its core, Wasp is a fairly ordi-
nary hypervisor, hosting many virtual contexts on top of a
host OS. However, like other minimal hypervisors such as
Firecracker [13], Unikernel monitors [75], and uhyve [45],
Wasp does not aim to emulate the entire x86 platform or
device model. As shown in Figure 5, Wasp is a userspace

runtime system built as a library that host programs (virtine
clients) can link against. Wasp mediates virtine interactions
with the host via a hypercall interface, which is checked by
the hypervisor and the virtine client. The figure shows one
virtine that has no host interactions, one virtine which makes a
valid hypercall request, and another whose hypercall request
is denied by the client-specified security policy. By using
Wasp’s runtime API, a virtine client can leverage hardware
specific virtualization features without knowing their details.
Several types of applications (including dynamic compilers
and other runtime systems) can link with the Wasp runtime
library to leverage virtines. On Linux, each virtual context is
represented by a device file which is manipulated by Wasp
using an ioctl.

Wasp provides no libraries to the binary being run, mean-
ing they have no in-virtine runtime support by default. Wasp
simply accepts a binary image, loads it at guest virtual address
0x8000, and enters the VM context. Any extra functionality
must be achieved by interacting with the hypervisor and vir-
tine client. In Wasp, delegation to the client is achieved with
hypercalls using virtual I/O ports.

Hypercalls in Wasp are not meant to emulate low-level
virtual devices, but are instead designed to provide high-level
hypervisor services with as few exits as possible. For exam-
ple, rather than performing file I/O by ultimately interacting
with a virtio device [67] and parsing filesystem structures, a
virtine could use a hypercall that mirrors the read POSIX
system call. Hypercalls vector to a co-designed handler ei-
ther provided by Wasp or implemented by the virtine client.
Wasp provides the mechanisms to create virtines, while the
client can specify security policies through handlers. These
handlers could simply run a series of checks and pass through
certain host system calls while filtering others out. While
virtine clients can implement custom hypercall handlers, they
can also choose from a variety of general-purpose handlers
that Wasp provides out-of-the-box; these canned hypercalls
are used by our language extensions (§5.3). By default, Wasp
provides no externally observable behavior through hyper-
calls other than the ability to exit the virtual context; all other
external behavior must be validated and expressly permit-
ted by the custom (or canned) hypercall handlers, which are
implemented (or selected) by the virtine client.

5.2 Wasp Caching and Snapshotting
Caching. To reduce virtine start-up latencies, Wasp sup-

ports a pool of cached, uninitialized, virtines (shells) that can
be reused. As depicted in Figure 6, Wasp receives a request
from a virtine client (A), which will drive virtine creation.
Such requests can be generated in a variety of virtine client
scenarios. For example, network traffic hitting a web server
that implements a virtine client may generate virtine invoca-
tions. A database engine incorporating a virtine client may run
virtine-based UDFs in response to triggers. Because we must

6

Isolating Functions at the Hardware Limit with Virtines EuroSys ’22, April 5–8, 2022, RENNES, France

host OS

VM pool

…
empty

virtine
shell func	Y

used
virtine

Wasp runtime

userspace

vm.clean()

func	X

ready
virtine

release()

external stimulus
A

C

E

emptyempty

virtine
shell

snapshot
cache

virtine
snapshot

B

D

Figure 6. Image snapshotting and virtine reuse with a pooled
design.

use a new virtine for every request, a hardware virtual context
must be provisioned to handle each invocation. The context is
acquired by one of two methods, provisioning a clean virtual
context (C) or reusing a previously created context (D).
When the system is cold (no virtines have yet been created),
we must ask the host kernel for a new virtual context by using
KVM’s KVM_CREATE_VM interface. If this route is taken, we
pay a higher cost to construct a virtine due to the host kernel’s
internal allocation of the VM state (VMCS on Intel/VMCB
on AMD). However, once we do this, and the relevant virtine
returns, we can clear its context (E), preventing information
leakage, and cache it in a pool of “clean” virtines (C) so
the host OS need not pay the expensive cost of re-allocating
virtual hardware contexts. These virtine “shells” sit dormant
waiting for new virtine creation requests (B). The benefits
of pooling virtines are apparent in Figure 8 by comparing
creation of a Wasp virtine from scratch (the “Wasp” mea-
surement) with reuse of a cached virtine shell from the pool
(“Wasp+C”). By recycling virtines, we can reach latencies
much lower than Linux thread creation and much closer to
the hardware limit, i.e., the vmrun instruction. Note that here
we include Linux process creation latencies as well for scale.
Included is the “Wasp+CA” (cached, asynchronous) measure-
ment, which does not measure the cost of cleaning virtines
and instead cleans them asynchronously in the background.
This can be implemented by either a background thread or
can be done when there are no incoming requests. This mea-
surement shows that the caching mechanism brings the cost
of provisioning a virtine shell to within 4% of a bare vmrun.

We also measured these costs on a recent SGX-enabled
Intel platform and observed similar behavior, as shown in
the bottom half of Figure 8. The “SGX Create” measurement
indicates the cost of creating a new enclave, and the ECALL
measurement indicates the cost of entering an enclave, thus
reusing the previously created context.

Snapshotting. As was shown in Section 4, the initializa-
tion of a virtine’s execution state can lead to significant over-
heads compared to traditional function calls. This overhead
is undesirable if the code that is executed in a virtine is not

Figure 7. Virtine code path on first execution and subsequent
executions after snapshotting.

particularly long-lived (less than a few microseconds). Oth-
ers have mitigated these start-up latencies in the serverless
domain by “checkpointing” or “snapshotting” container run-
time state after initialization [21, 26, 60]. In a similar fashion,
Wasp supports snapshotting by allowing a virtine to leverage
the work done by previous executions of the same function.
As outlined in Figure 7, the first execution of a virtine must
still go through the initialization process by entering the de-
sired mode and initializing any runtime libraries (in this case,
libc). The virtine then takes a snapshot of its state, and con-
tinues executing. Subsequent executions of the same virtine
can then begin execution at the snapshot point and skip the
initialization process. This optimization significantly reduces
virtine overheads, which we explore further in Section 5.3. Of
course, by snapshotting a virtine’s private state, that state is
exposed to all future virtines that are created using that “reset
state.” Thus, care must be taken in describing what memory
is saved in a snapshot in order to maintain the isolation objec-
tives outlined in Section 3.3. We detail the costs involved in
snapshotting in Section 6.2.

5.3 C Language Extensions
While Wasp significantly eases the development and deploy-
ment of virtines, with only the runtime library, developers
must still manage virtine internals, namely the build process
for the virtine’s internal execution environment. Requiring
developers to create kernel-style build systems that package
boot code, address space configurations, a minimal libc, and
a linker script per virtine creates an undue burden. To al-
leviate this burden, we implemented a clang wrapper and
LLVM compiler pass. The purpose of the clang wrapper is to
include our pass in the invocation of the middle-end. The com-
piler pass detects C functions annotated with the virtine

keyword, runs middle-end analysis at the IR level, and auto-
matically generates code that invokes a pre-compiled virtine
binary whenever the function is called. When this pass de-
tects a function annotation as shown in Figure 9, it generates
a call graph rooted at that function. The compiler automati-
cally packages a subset of the source program into the virtine

7

EuroSys ’22, April 5–8, 2022, RENNES, France N. Wanninger, J. Bowden, K. Shetty, A. Garg, and K. Hale

Figure 8. Creation latencies for execution contexts on modern
AMD and Intel platforms, including Wasp virtines and SGX
where available. Note the log scale on the horizontal axis.

virtine int fib(int n) {

if (n < 2) return n;

return fib(n - 1) + fib(n - 2);

}

Figure 9. Virtine programming in C with compiler support.

context based on what that virtine needs. Global variables ac-
cessed by the virtine are currently initialized with a snapshot
when the virtine is invoked. Concurrent modifications (e.g.,
by different virtines, or by the client and a virtine) will occur
on distinct copies of the variable. Currently, if a virtine calls
another virtine-annotated function, a nested virtine will not
be created.

To further ease programming burden, compiler-supported
virtines must have access to some subset of the C standard
library. Due to the nature of their runtime environment, ba-
sic virtines do not include these libraries. To remedy this,
we created a virtine-specific port of newlib [9], an embed-
dable C standard library that statically links and maintains
a relatively small virtine image size. Newlib allows devel-
opers to provide their own system call implementations; we
simply forward them to the hypervisor as a hypercall. When
the virtine keyword is used, all hypercalls are restricted
by default, following the default-deny semantics of virtines
previously mentioned. If, however, the programmer (imple-
menting the virtine client) would like to permit hypercalls,
they can use the virtine_permissive keyword to allow

Real
Mode

Long
Mode WorkloadLibC

RT init

Reset

Allocation

A

Real
Mode

Long
Mode Workload

Reset

Allocation

B

Figure 10. Default execution environments available to a
virtine.

all hypercalls, or the virtine_config(cfg) to supply a
configuration structure that contains a bit mask of allowed
hypercalls. If a hypercall is permitted, the handler in the client
must validate the arguments and service it, for example by
delegating to the host kernel’s system call interface or by
performing client-specific emulation.

This allows virtines to support standard library functional-
ity without drastically expanding the virtine runtime environ-
ments. Of course, by using a fully fledged standard library,
the user still opens themselves up to common programming
errors. For example, an errant strcpy can still result in un-
defined (or malicious) behavior, but this has no consequences
for the host or other virtines as outlined in Section 3.3. All
virtines created via our language extensions use Wasp’s snap-
shot feature by default. This can be disabled with the use of
an environment variable.

5.4 Execution Environments
Wasp provides two default execution environments for pro-
grammers to use, though others are possible. These default
environments are shown in Figure 10. For the C extensions
(A), the virtine is pre-packaged with a POSIX-like runtime
environment, which stands between the “boot” process and
the virtine’s function. If a programmer directly uses the Wasp
C++ API, (B), the virtine is not automatically packaged
with a runtime, and it is up to the client to provide the virtine
binary. Both environments can use snapshotting after the reset
stage, allowing them to skip the costly boot sequence. We
envision an environment management system that will allow
programmers to treat these environments much like package
dependencies [49].

6 Evaluation
In this section, we evaluate virtines and the Wasp runtime us-
ing microbenchmarks and case studies that are representative
of function isolation in the wild. With these experiments, we
seek to answer the following questions:

• How significant are baseline virtine startup overheads
with our language extensions, and how much computa-
tion is necessary to amortize them? (§6.1)

8

Isolating Functions at the Hardware Limit with Virtines EuroSys ’22, April 5–8, 2022, RENNES, France

Figure 11. Latency of virtines as computational intensity
increases. Note the log scale on the vertical axis.

• What is the impact of the virtine’s execution environ-
ment (image size) on start-up cost? (§6.2)

• What is the performance penalty for host interactions?
(§6.3)

• How much effort is required to integrate virtines with
off-the-shelf library code? (§6.4)

• How difficult is it to apply virtines to managed language
use cases and what are the costs? (§6.5)

6.1 Startup Latencies with Language Extensions
We first study the start-up overheads of virtines using our
language extensions. We implemented the minimal fib ex-
ample shown in Figure 9 and scaled the argument to fib

to increase the amount of computation per function invo-
cation, shown in Figure 11. We compare virtines with and
without image snapshotting to native function invocations.
𝑓 𝑖𝑏 (0) essentially measures the inherent overhead of virtine
creation, and as 𝑛 increases, the cost of creating the virtine is
amortized. The measurements include setup of a basic virtine
image (which includes libc), argument marshalling, and mini-
mal machine state initialization. The argument, 𝑛, is loaded
into the virtine’s address space at address 0x0. In the case
of the experiment labeled “virtine + snapshot,” a snapshot of
the virtine’s execution state is taken on the first invocation of
the fib function. All subsequent invocations of that function
will use this snapshot, skipping the slow path boot sequence
(see Figure 7) producing an overall speedup of 2.5× relative
to virtines without snapshotting for 𝑓 𝑖𝑏 (0). Note that we are
not measuring the steady state, so the bars include the over-
head for taking the initial snapshot. This is why we see more
variance for the snapshotting measurements.

At first, the relative slowdown between native function in-
vocation and virtines with snapshotting is 6.6×. When the
virtine is short-lived, the costs of provisioning a virtine shell
and initializing it account for most of the execution time.

System Latency Boundary Cross Mechanism

Wedge [20] ∼60𝜇s sthread call
LwC [48] 2.01𝜇s lwSwitch

Enclosures [27] 0.9𝜇s Custom syscall interface
SeCage [51] 0.5𝜇s VMRUN/VMFUNC
Hodor [32] 0.1𝜇s VMRUN/VMFUNC
Virtines 5𝜇s Syscall interface + VMRUN

Table 2. Comparing costs of crossing isolation boundaries.

Figure 12. Impact of image size on start-up latency.

However, with larger computational requirements, the slow-
down drops to 1.03× for 𝑛 = 25 and 1.01× for 𝑛 = 30. This
shows that as the function complexity increases, virtine start-
up overheads become negligible, as expected. Here we can
amortize start-up overheads with ∼100𝜇s of work.

We compare virtine start-up costs to the cost of crossing
isolation boundaries in other published systems in Table 2.
While the types of isolation these systems provide is slightly
different, these numbers put the cost of the underlying mech-
anism into perspective. LwC and Enclosures switch between
isolated contexts within the same kernel in a similar way
to process-based isolation. SeCage and Hodor measure only
the latency of the VMFUNC instruction without a VMEXIT
event. Virtine latency is measured from userspace on the host,
surrounding the KVM_RUN ioctl, thus incurring system call
and ring-switch overheads.

6.2 Impact of Image Size
To evaluate the impact of virtines’ execution environments on
start-up costs, we performed an experiment that artificially in-
creases image size, shown in Figure 12. This figure shows in-
creasing virtine image size (up to 16MB) versus virtine execu-
tion latency for a minimal virtine that simply halts on startup.
We synthetically increase image size by padding a minimal
virtine image with zeroes. With a 16MB image size, the start-
up cost is 2.3ms. This amounts to roughly 6.8GB/s, which is
in line with our measurement of the memcpy bandwidth on
our tinker machine, 6.7GB/s. This shows the minimal cost
a virtine will incur for start-up with a simple snapshotting

9

EuroSys ’22, April 5–8, 2022, RENNES, France N. Wanninger, J. Bowden, K. Shetty, A. Garg, and K. Hale

strategy when the boot sequence is eliminated. Using a copy-
on-write approach, as is done in SEUSS [21], we expect this
cost could be reduced drastically.

These results reflect what others have seen for unikernel
boot times. Unikernels tend to have a larger image size than
what would be needed for a virtine execution environment,
and thus incur longer start-up times. Kuenzer et al. report the
shortest we have seen, at 10s to 100s of 𝜇s for Unikraft [42],
while other unikernels (MirageOS [54], OSv [40], Rump [39],
HermiTux [61], and Lupine [43]) take tens to hundreds of mil-
liseconds to boot a trivial image. For example, we measured
the no-op function evaluation time under OSv to be roughly
600 milliseconds on our testbed. A similar no-op function
achieved roughly 12ms under MirageOS run with Solo5’s
HVT tender [12], which directly interfaces with KVM and
uses hypercalls in a similar way to virtines.

6.3 Host Interaction Costs
As outlined in Section 2, virtines must interact with the client
for all actions that are not fulfilled by the environment within
the virtine. For example, a virtine must use hypercalls to read
files or access shared state. Here we attempt to determine
how frequent client interactions (via hypercalls) affect perfor-
mance for an easily understood example. To do so, we use
our C extension to annotate a connection handling function
in a simple, single-threaded HTTP server that serves static
content. Each connection that the server receives is passed to
this function, which automatically provisions a virtine envi-
ronment.

We measured both the latency and throughput of HTTP
requests with and without virtines on tinker. The results are
shown in Figure 13. Virtine performance is shown with and
without snapshotting (“virtine” and “snapshot”). Requests are
generated from localhost using a custom request generator
(which always requests a single static file). Note that each
virtine invocation here involves seven host interactions (hy-
percalls): (1) read() a request from host socket, (2) stat()
requested file, (3) open() file, (4) read() from file, (5)
write() response, (6) close() file, (7) exit(). Wasp han-
dles these hypercalls by first validating arguments, and if they
are allowed through, re-creates the calls on the host. For exam-
ple, a validated read() will turn into a read() on the host
filesystem. The exits generated by these hypercalls are doubly
expensive due to the ring transitions necessitated by KVM.
However, despite the cost of these host interactions, virtines
with snapshots incur only a 12% decrease in throughput rel-
ative to the baseline. We expect that these costs would be
reduced in a more realistic HTTP server, as more work unre-
lated to I/O would be involved. This effect has been observed
by others employing connection sandboxing [27].

(a) (b)

Figure 13. Mean response latency (a) and harmonic mean
of throughput (b) for a simple HTTP server written in C,
with each request handled natively and in a virtine (with and
without snapshotting).

6.4 Integration with Library Code
To investigate the difficulty of incorporating virtines into
libraries, and more significant codebases, we modified off-
the-shelf OpenSSL.4 OpenSSL is used as a library in many
applications, such as the Apache web server, Lighttpd, and
OpenVPN. We changed the library so that its 128-bit AES
block cipher encryption is carried out in virtine context. We
chose this function since it is a core component of many
higher-level encryption features. While this would not be a
good candidate for running in virtine context from a perfor-
mance perspective, it gives us an idea of how difficult it is
to use virtines to isolate a deeply buried, heavily optimized
function in a large codebase.

Compiling OpenSSL using virtines was straightforward.
From the developer’s perspective, it simply involved anno-
tating the block cipher function with the virtine keyword
and integrating our custom clang/LLVM toolchain with the
OpenSSL build environment (i.e., swapping the default com-
piler). The latter step was more work. In all, the change took
roughly one hour for an experienced developer.

Though our main goal here was not to evaluate end-to-
end performance, we did measure the performance impact
of integrating virtines using OpenSSL’s internal benchmark-
ing tool. We ran the built-in speed benchmark5 to measure
the throughput of the block cipher using virtines (with our
snapshotting optimization) compared to the baseline (native
execution). Note that since the block cipher is being invoked
many thousands of times per second, virtine creation over-
heads amplify the invocation cost significantly. In a realistic
scenario, the developer would likely include more functional-
ity in virtine context, amortizing those overheads. That said,
with our optimizations and a 16KB cipher block size, virtines
only incur a 17× slowdown relative to native execution with

4OpenSSL version 3.0.0 alpha7.
5openssl speed -elapsed -evp aes-128-cbc

10

Isolating Functions at the Hardware Limit with Virtines EuroSys ’22, April 5–8, 2022, RENNES, France

snapshotting. The OpenSSL virtine image we use is roughly
21KB, which following Figure 12 will translate to 16𝜇s for
every virtine invocation. It follows, then, that virtine creation
in this example is memory bound, since copying the snapshot
comprises the dominant cost.

6.5 Virtines for Managed Languages
As described in our threat model (§3.2), virtines can provide
isolation in environments where untrusted code executes. Ex-
amples of such environments are serverless platforms and
databases UDFs. These environments often use high-level
languages like JavaScript, Python, or Java to isolate the un-
trusted code. However, this isolation can still be compromised
by bugs in the isolation logic.

Motivated by these environments, we investigate how a
managed language can incorporate fine-grained isolation by
running JavaScript functions in virtine context, and by explor-
ing how virtine-specific optimizations can be used to reduce
costs and improve latencies.

Implementation. We chose the Duktape JavaScript en-
gine for its portability, ease-of-use, and small memory foot-
print [10]. Our baseline implementation (no virtines) is con-
figured to allocate a Duktape context, populate several native
function bindings, execute a function that base64 encodes a
buffer of data, and returns the encoding to the caller after tear-
ing down (freeing) the JS engine. The virtine does the same
thing, but uses the Wasp runtime library directly (no language
extensions). This allows the engine to use only three hy-
percalls: snapshot(), get_data(), and return_data().
The snapshot hypercall instructs the runtime to take a snap-
shot after booting into long mode and allocating the Duktape
context. get_data() asks the hypervisor to fill a buffer of
memory with the data to be encoded, and once the virtine
encodes the data, it calls return_data() and the virtine
exits. By co-designing the hypervisor and the virtine, and by
providing only a limited set of hypercalls, we limit the attack
surface available to an adversary. For example, snapshot
and get_data cannot be called more than once, meaning that
if an attacker were to gain remote code execution capabilities,
the only permitted hypercall would terminate the virtine.

Benchmarking and evaluation. Figure 14 shows the re-
sults of our Duktape implementation. The virtine trial without
snapshotting takes 125𝜇s longer to execute than the baseline.
We attribute this to several sources, including the required
virtine provisioning and initialization overhead and the over-
head to allocate and later free the Duktape context. By giving
programmers direct control over more aspects of the execu-
tion environment, several optimizations can be made. For
example, snapshotting can be used as shown in Figure 7 by
including the initialization of the JavaScript engine in the vir-
tine’s boot sequence. Doing so avoids many calls to malloc

and other expensive functions while initializing. By taking ad-
vantage of snapshotting in the case of the “Virtine + Snapshot”

Figure 14. Slowdown of JavaScript virtines relative to native.
The baseline latency is 419𝜇s.

measurements, virtines can enjoy a significant reduction in
overhead–roughly 2×. Further, since all virtines are cleared
and reset after execution, paying the cost of tearing down
the JavaScript engine can be avoided. By applying both of
these optimizations, the virtine can almost entirely avoid the
cost of allocating and freeing the Duktape context by retain-
ing it–something that cannot be done when executing in the
client environment. Both of the trials, “Virtine NT” and “Vir-
tine+Snapshot+NT” are designed to take advantage of this
“No Teardown” optimization in full. Note that the virtine is
not executing code any faster than native, but it is able to
provide a significant reduction in overhead by simply execut-
ing less code by applying optimizations. These optimizations
cause the overall latency to drop to 137𝜇s, which effectively
constitutes the parsing and execution of the JavaScript code.
Similar optimizations are applied in SEUSS [21], which uses
the more complex V8 JavaScript engine, and thus avoids even
more initialization overhead.

7 Discussion
In this section, we discuss how our results might translate
to realistic scenarios and more complex applications, the
limitations of our current approach, and other use cases we
envision for virtines.

7.1 Implications
Libraries. In Section 6.4, we demonstrated that it requires

little effort to incorporate virtines into existing codebases that
use sensitive or untrusted library functions. In our example
we assumed access to the library’s code (libopenssl in our
case). While others make the same assumption [27], this is
not an inherent limitation. The virtine runtime could apply
a combination of link-time wrapping and binary rewriting
to migrate library code automatically to run in virtine con-
text. Others have applied such techniques for software fault
isolation (SFI) [74], even in virtualized settings [31].

11

EuroSys ’22, April 5–8, 2022, RENNES, France N. Wanninger, J. Bowden, K. Shetty, A. Garg, and K. Hale

Figure 15. Serverless virtine performance compared to Open-
Whisk’s container-based platform.

Serverless Functions. While production serverless plat-
forms and databases may use more complete JavaScript en-
gines like V8, we can reason about how the results of our Duk-
tape implementation would translate to these settings. Ama-
zon Lambda, for example, constructs a container to achieve
the desired level of isolation [73]. Here, the cost of creating a
process and allocating a V8 context is considerable. If similar
or better isolation can be achieved with a virtine, then the cost
of creating the container can be eliminated.

To determine the feasibility of serverless virtines, we im-
plemented a prototype serverless platform based on Apache’s
OpenWhisk framework [62] that integrates with our virtine
Duktape engine. The current implementation only supports
a single-node setup, and does not yet incorporate an API
gateway, a load balancer, or authentication mechanisms. In
this platform, which we call Vespid, users register JavaScript
functions via a web application, which produces requests to
our framework’s main endpoint. These requests are handled
by a concurrent server which runs each serverless function in
a distinct virtine (rather than a container) by leveraging the
Wasp runtime API. We measure the performance of invoking
the same base64 JS encoding function used in Section 6.5
on our Vespid platform (which uses Duktape) and compare
it to vanilla OpenWhisk (which uses V8 via Node.js). The
results are shown in Figure 15. We measure end-to-end la-
tency of both platforms, where client requests are generated
on the same node as the server to minimize differences in the
front-end implementations. We produce a series of concurrent
function requests (from multiple clients) against both plat-
forms using Locust [52], an off-the-shelf workload generator.
This invocation pattern involves an initial ramp-up period that

leads to two bursts, which then ramp down. Achieved through-
put is shown on the dotted line. Vespid benefits from the light-
weight virtine execution environment, Duktape’s small image
size, and Wasp’s caching and snapshotting optimizations,
leading to low-latency responses for a bursty load pattern.
However, it is important to note that Vespid is a prototype
that lacks many features offered by OpenWhisk, including
the high-performance V8 engine. Note also that OpenWhisk’s
container engine does not employ optimizations such as con-
tainer reuse and snapshotting seen in the recent literature like
SOCK [60], SEUSS [21], Faasm [70], and Catalyzer [26],
which all provide cold-start latencies less than 20ms. These
results do show that a virtine-based serverless platform with
competitive performance is feasible. Serverless functions that
leverage external resources like S3 buckets can be facilitated
with the appropriate virtine client support via hypercall han-
dlers.

User-defined Fucntions. A similar model could be used to
more strongly isolate UDFs from one another in database sys-
tems. Postgres, for example, uses V8 mechanisms to isolate
individual UDFs from one another [11], but they still execute
in the same address space. Because virtine address spaces are
disjoint, they could help with this limitation. Furthermore,
virtines would allow functions in unsafe languages (e.g., C,
C++) to be safely used for UDFs.

7.2 Limitations
Workloads. While our current workloads represent compo-

nents that could be used in real settings, we do not currently
integrate with commodity serverless platforms or database
engines. This integration is currently underway, with Open-
Whisk and PostgreSQL, respectively.

Applications that rely on high-performance JavaScript will
use a production engine like V8 or SpiderMonkey. Our evalu-
ation uses Duktape, which lacks features like JIT compilation,
but has the benefits of compiling into a small (∼578KB) im-
age and being easily portable. We envision that with sufficient
runtime support—in particular, a port of the C++ standard
library—a V8 virtine implementation is likely feasible. We
believe our evaluation demonstrates the potential for incorpo-
rating virtines with high-level languages (HLLs).

Language extensions. Currently, our C extension lacks the
ability to take advantage of functionality located in a different
LLVM module (C source file) than the one that contains the
C function. Build systems used in C applications produce in-
termediate object files that are linked into the final executable.
This means that virtines created using the C extension are
restricted to functionality in the same compilation unit. So-
lutions to this problem typically involve modifying the build
system to produce LLVM bitcode and using whole program
analysis to determine which functions are available to the
virtine, and which are not.

12

Isolating Functions at the Hardware Limit with Virtines EuroSys ’22, April 5–8, 2022, RENNES, France

Automatically generated virtines face an ABI challenge
for argument passing. Because they do not share an address
space with the host, argument marshalling is necessary. We
leveraged LLVM to copy a compile-time generated structure
containing the argument values into the virtine’s address space
at a known offset. Marshalling does incur an overhead that
varies with the argument types and sizes, as is typical with
“copy-restore” semantics in RPC systems [19]. This affects
start-up latencies when launching virtines, as described in
§6.4.

Virtines do not currently support nesting, but this is not an
inherent limitation. Virtines that dynamically allocate mem-
ory are possible with an execution environment that provides
heap allocation, but that memory is currently limited to the
virtine context. We believe secure channels to communicate
data between the virtine and host could be implemented with
appropriate hypercalls and library/language support. The vir-
tine compiler could identify and transform such allocation
sites (e.g., malloc) using escape analysis.

Snapshotting performance. Wasp’s snapshotting mecha-
nism currently uses memcpy to populate a virtine’s memory
image with the snapshot. This copying, as shown in Figure 12,
constitutes a considerable cost for a large virtine image. We
expect this cost to drop when using copy-on-write mecha-
nisms to reset a virtine, as in SEUSS [21].

KVM performance. As we found in Section 4.2, KVM
has performance penalties due to its need to perform several
ring transitions for each exit, and for VM start-up. Some of
these costs are unavoidable because they maintain userspace
control over the VM. However, a Type-I VMM like Palacios
or Xen [16, 44] can mitigate some software latencies incurred
by virtines.

Security. Our threat model makes assumptions that may
not hold in the real world. For example, a hardware bug in
VT-x or a microarchitectural side channel vulnerability (e.g.,
Meltdown [47]) could feasibly be used to break our security
guarantees.

7.3 Other use cases
In our examples, we used virtines to isolate certain annotated
functions from the rest of the program. This use case is not the
only possible one. Below, we outline several other potential
use cases for virtines.

Augmenting language runtimes. We believe that HLLs
present an incremental path to using virtines, i.e., the lan-
guage runtime might abstract away the use of virtines entirely,
for example, to wrap function calls via the foreign function
interface (Chisnall et al. employed special-purpose hardware
for this purpose [22]). Virtines might also be used to apply
security-in-depth to JIT compilers and dynamic binary trans-
lators. For example, bugs that lead to vulnerabilities in built-in

functions or the JIT’s slow-path handlers [66] can be miti-
gated by running them in virtine context (NoJITsu achieves
this with Intel’s Memory Protection Keys [64]). Polyglot en-
vironments like GraalVM [76] could more safely use native
code by employing virtines.

Distributed services. Because virtines implement an ab-
stract machine model, are packaged with their runtime en-
vironment, and employ similar semantics to RPC [19], they
allow for location transparency. Virtines could therefore be
migrated to execute on remote machines just like containers,
e.g., for code offload. This could allow for implementing dis-
tributed services with virtines, and for service migration based
on high load scenarios, especially when RPCs are fast, as in
the datacenter [38]. If virtines require host services or hard-
ware not present in the local machine, they can be migrated
to a machine that does.

8 Related Work
There is significant prior work on isolation of software compo-
nents. However, the received wisdom is that when using hard-
ware virtualization, creating a new isolated context for every
isolation boundary crossing is too expensive. With virtines,
we have shown that, with sufficient optimization, these over-
heads can be significantly reduced. Virtines enjoy several
unique properties: they have an easy-to-use programming
model, they implement an abstract machine model that al-
lows for customization of the execution environment and the
hypervisor, and because they create new contexts on every
invocation, we can apply snapshotting to optimize start-up
costs. We now summarize key differences with prior work.

Isolation techniques. The closest work to virtines is Enclo-
sures [27], which allow for programmer-guided isolation by
splitting libraries into their own code, data, and configuration
sections within the same binary. The security policy of Enclo-
sures is defined in terms of packages, but with virtines, the
security policy is defined and enforced at the level of individ-
ual functions. While, like Enclosures, virtines can be used to
isolate library functions from their calling environment, they
can also be used to selectively isolate functions from other
users’ virtines in a multi-tenant cloud environment.

Hodor [32] also provides library isolation, particularly for
high-performance data-plane libraries. Gotee uses language-
level isolation like virtines, but builds on SGX enclaves rather
than hardware virtualization [28].

While TrustVisor [56] employs hardware virtualization to
isolate application components (and assumes a strong adver-
sary model), virtines enjoy a simpler programming model.
SeCage uses static and dynamic analysis to automatically
isolate software components guided by the secrets those com-
ponents access [51]. Virtines give programmers more control
over isolated components. Glamdring also automatically par-
titions applications based on annotations [46], but uses SGX

13

EuroSys ’22, April 5–8, 2022, RENNES, France N. Wanninger, J. Bowden, K. Shetty, A. Garg, and K. Hale

Enclaves which have more limited execution environments
than virtines.

With Wedge [20], execution contexts (sthreads) are given
minimal permissions to resources (including memory) using
default deny semantics. However, virtines are more flexible
in that they need not use the same host ABI and they do not
require a modified host kernel. Dune is an example of an
unconventional use of a virtual execution environment that
provides high performance and direct access to hardware de-
vices within a Linux system [18]. Unlike virtines, Dune’s
virtualization is at process granularity. Similarly, SMV iso-
lates multi-threaded applications [33].

Several systems that support isolated execution leverage
Intel’s Memory Protection Keys [37] for memory safety [24,
35, 64, 68, 72]. For virtines, we chose not to use this mech-
anism since the number of protection domains (16) offered
by the hardware was insufficient for multi-tenant scenarios
(e.g., serverless). Even without this limitation, instructions
that access the PKRU register would need to be validated/re-
moved, e.g., with binary rewriting, as is done in ERIM [72].
We leave the exploration of MPK and similar fine-grained
memory protection mechanisms for future work.

Lightweight-Contexts (LwCs) are isolated execution con-
texts within a process [48]. They share the same ABI as other
contexts, but essentially act as isolated co-routines. Unlike
LwCs, virtines can run an arbitrary software stack, and gain
the strong isolation benefits of hardware virtualization. The
Endokernel architecture [35] enables intra-process isolation
with virtual privilege rings, but still maps domains to the
process abstraction, rather than functions.

Nooks [71], LXD [58], and Nested Kernel [25] all imple-
ment isolation for kernel modules.

Software Fault Isolation [74] (SFI) enforces isolation by
instrumenting applications with enforcement checks at bound-
ary crossings, and thus does not leverage hardware support.

Virtualization. Wasp is similar in architecture to other min-
imal hypervisors (implementing 𝜇VMs). Unlike Amazon’s
Firecracker [13] or Google’s Cloud Hypervisor [30], we do
not intend to boot a full Linux (or Windows) kernel, even
with a simplified I/O device model. Wasp bears more simi-
larity to ukvm [75] (especially the networking interface) and
uhyve [45]. Unlike those systems, we designed Wasp to use a
set of pre-packaged runtime environments. We intend Wasp
to be used as a pluggable back-end (for applications, libraries,
serverless platforms, or language runtimes) rather than as a
stand-alone VMM.

Serverless. Faasm [70] employs SFI for isolated, stateful
serverless functions, partly based on the premise that hard-
ware virtualization is simply too expensive. We show that
this is not necessarily the case. Cloudflare uses V8 JavaScript
“isolates” to reduce VM cold-start at the language level [23].
Others have developed optimized serverless systems based
on the observation that a significant fraction of start-up costs

can be attributed to language runtime and system software
initialization, a task often duplicated across function invoca-
tions [21, 26, 60]. These systems achieve start-up latencies in
the sub-millisecond range with aggressive caching of runtime
state, which we also employ.

Execution environments. Jitsu [53] allows Unikernels to
be spawned on demand in response to network events, but
does not allow programmers to invoke virtualized environ-
ments at the function call granularity. There is a rich history
of combining language and OS research. Typified by Mira-
geOS [54], writing kernel components in a high-level lan-
guage gives the kernel developer more flexibility in moving
away from legacy interfaces. It can also shift the burden of
protection and isolation [34, 65].

9 Conclusions and Future Work
In this work, we explored the design and implementation of
virtines—light-weight, isolated, virtualized functions, which
can provide fine-grained execution without much of the over-
heads of traditional hardware virtualized execution environ-
ments. We probed the lower limits of hardware virtualization
and presented Wasp, an embeddable hypervisor designed for
virtines with microsecond start-up latency and limited slow-
down. Wasp allows programs to easily create isolated contexts
with tunable isolation policies. We introduced a compiler ex-
tension that allows developers to use virtines with simple
code annotations, and explored how they can be used to ease
virtine deployment. We demonstrated that integrating virtines
with existing library code takes little effort. We modified an
off-the-shelf JavaScript engine to use virtines, and explored
how high-level languages can take advantage of them. In fu-
ture work, we plan to explore other virtine applications in
HLLs, for example in JIT engines. We also plan to investigate
automatic virtine environment synthesis.

Acknowledgments
We thank the anonymous reviewers and our shepherd, Martin
Maas. We also thank the anonymous reviewers from OSDI
’20 and EuroSys ’21 for their encouraging and constructive
feedback that helped improve the paper significantly. We
thank Andrew Chien, Tyler Caraza-Harter, Boris Glavic, and
Peter Dinda for enlightening discussions and suggestions. We
also thank Andrew Neth, Cooper Van Kampen, and Griffin
Dube for their help field testing the artifact scripts on a vari-
ety of machines. This work was made possible with support
from the United States National Science Foundation (NSF)
via grants CNS-1718252, CNS-1730689, REU-1757964,
and CNS-1763612.

References
[1] [n.d.]. Chrome Sandbox - Linux Implementation Details. Retrieved

May 3, 2021 from https://chromium.googlesource.com/chromium/
src/+/master/docs/linux/sandboxing.md

14

https://chromium.googlesource.com/chromium/src/+/master/docs/linux/sandboxing.md
https://chromium.googlesource.com/chromium/src/+/master/docs/linux/sandboxing.md

Isolating Functions at the Hardware Limit with Virtines EuroSys ’22, April 5–8, 2022, RENNES, France

[2] 2009. CVE-2009-2555. Available from MITRE, CVE-ID CVE-2009-
2555.. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2009-2555

[3] 2009. CVE-2009-2935. Available from MITRE, CVE-ID CVE-2009-
2935.. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2009-2935

[4] 2009. CVE-2014-0160. Available from MITRE, CVE-ID CVE-2014-
0160.. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2014-0160

[5] 2009. CVE-2018-18342. Available from MITRE, CVE-ID CVE-2018-
18342.. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2018-18342

[6] 2009. CVE-2018-6056. Available from MITRE, CVE-ID CVE-2018-
6056.. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2018-6056

[7] 2009. CVE-2021-3156. Available from MITRE, CVE-ID CVE-2021-
3156.. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2021-3156

[8] 2017. CVE-2009-2555. Available from NVD, CVE-ID CVE-2017-
2505.. https://nvd.nist.gov/vuln/detail/CVE-2017-2505

[9] 2018. Newlib. Retrieved May 20, 2020 from https://sourceware.org/
newlib/

[10] 2022. Duktape Javascript Engine. https://duktape.org/
[11] 2022. Procedural Languages in PostgreSQL. https://www.postgresql.

org/docs/13/external-pl.html
[12] 2022. Solo5. https://github.com/Solo5/solo5
[13] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight Virtualization for Serverless Applications. In
Proceedings of the 17𝑡ℎ USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’20). USENIX Association, Santa
Clara, CA, 419–434. https://www.usenix.org/conference/nsdi20/
presentation/agache

[14] Kalev Alpernas, Cormac Flanagan, Sadjad Fouladi, Leonid Ryzhyk,
Mooly Sagiv, Thomas Schmitz, and Keith Winstein. 2018. Secure
Serverless Computing Using Dynamic Information Flow Control. Pro-
ceedings of the ACM on Programming Languages 2, OOPSLA, Article
118 (Oct. 2018), 26 pages. https://doi.org/10.1145/3276488

[15] AMD Corporation 2016. AMD64 Architecture Programmer’s Manual
Volume 2: Systems Programming. AMD Corporation.

[16] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003.
Xen and the Art of Virtualization. In Proceedings of the 19𝑡ℎ ACM
Symposium on Operating Systems Principles (Bolton Landing, NY,
USA) (SOSP ’03). Association for Computing Machinery, New York,
NY, USA, 164–177. https://doi.org/10.1145/945445.945462

[17] Andrew Baumann, Dongyoon Lee, Pedro Fonseca, Lisa Glenden-
ning, Jacob R. Lorch, Barry Bond, Reuben Olinsky, and Galen C.
Hunt. 2013. Composing OS Extensions Safely and Efficiently with
Bascule. In Proceedings of the 8𝑡ℎ ACM European Conference on
Computer Systems (Prague, Czech Republic) (EuroSys ’13). Asso-
ciation for Computing Machinery, New York, NY, USA, 239–252.
https://doi.org/10.1145/2465351.2465375

[18] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Maz-
ières, and Christos Kozyrakis. 2012. Dune: Safe User-level Access to
Privileged CPU Features. In Proceedings of the 10𝑡ℎ USENIX Confer-
ence on Operating Systems Design and Implementation (OSDI ’12).
335–348.

[19] Andrew D. Birrell and Bruce Jay Nelson. 1983. Implementing Remote
Procedure Calls. In Proceedings of the 9𝑡ℎ ACM Symposium on Operat-
ing Systems Principles (SOSP ’83). https://doi.org/10.1145/800217.
806609

[20] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp.
2008. Wedge: Splitting Applications into Reduced-Privilege

Compartments. In Proceedings of the 5𝑡ℎ USENIX Sympo-
sium on Networked Systems Design and Implementation (San
Francisco, California) (NSDI ’08). USENIX Association, 309–
322. https://www.usenix.org/conference/nsdi-08/wedge-splitting-
applications-reduced-privilege-compartments

[21] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger,
and Jonathan Appavoo. 2020. SEUSS: Skip Redundant Paths to
Make Serverless Fast. In Proceedings of the 15𝑡ℎ European Confer-
ence on Computer Systems (EuroSys ’20). Association for Comput-
ing Machinery, New York, NY, USA, Article 32, 15 pages. https:
//doi.org/10.1145/3342195.3392698

[22] David Chisnall, Brooks Davis, Khilan Gudka, David Brazdil, Alexandre
Joannou, Jonathan Woodruff, A. Theodore Markettos, J. Edward Maste,
Robert Norton, Stacey Son, Michael Roe, Simon W. Moore, Peter G.
Neumann, Ben Laurie, and Robert N.M. Watson. 2017. CHERI JNI:
Sinking the Java Security Model into the C. In Proceedings of the 22𝑛𝑑

International Conference on Architectural Support for Programming
Languages and Operating Systems (Xi’an, China) (ASPLOS ’17). As-
sociation for Computing Machinery, New York, NY, USA, 569–583.
https://doi.org/10.1145/3037697.3037725

[23] cloudflare [n.d.]. How Workers Works. https://developers.cloudflare.
com/workers/learning/how-workers-works. Accessed 2021-05-01.

[24] R. Joseph Connor, Tyler McDaniel, Jared M. Smith, and Max
Schuchard. 2020. PKU Pitfalls: Attacks on PKU-based Memory Isola-
tion Systems. In Proceedings of the 29𝑡ℎ USENIX Security Symposium
(USENIX Security ’20). USENIX Association, USA, 1409–1426.

[25] Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John Criswell,
and Vikram Adve. 2015. Nested Kernel: An Operating System Architec-
ture for Intra-Kernel Privilege Separation. In Proceedings of the 20𝑡ℎ

International Conference on Architectural Support for Programming
Languages and Operating Systems (Istanbul, Turkey) (ASPLOS ’15).
Association for Computing Machinery, New York, NY, USA, 191––206.
https://doi.org/10.1145/2694344.2694386

[26] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang
Qin, Qixuan Wu, and Haibo Chen. 2020. Catalyzer: Sub-Millisecond
Startup for Serverless Computing with Initialization-Less Booting. In
Proceedings of the 25𝑡ℎ International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (Lausanne,
Switzerland) (ASPLOS ’20). Association for Computing Machinery,
New York, NY, USA, 467–481. https://doi.org/10.1145/3373376.
3378512

[27] Adrien Ghosn, Marios Kogias, Mathias Payer, James R. Larus, and
Edouard Bugnion. 2021. Enclosure: Language-Based Restriction of
Untrusted Libraries. In Proceedings of the 26𝑡ℎ ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems (Virtual, USA) (ASPLOS ’21). Association
for Computing Machinery, New York, NY, USA, 255–267. https:
//doi.org/10.1145/3445814.3446728

[28] Adrien Ghosn, James R. Larus, and Edouard Bugnion. 2019. Secured
Routines: Language-based Construction of Trusted Execution Environ-
ments. In Proceedings of the USENIX Annual Technical Conference
(Renton, WA, USA) (USENIX ATC ’19). USENIX Association, 571–
586. http://www.usenix.org/conference/atc19/presentation/ghosn

[29] Michael Godfrey, Tobias Mayr, Praveen Seshadri, and Thorsten von
Eicken. 1998. Secure and Portable Database Extensibility. In Proceed-
ings of the 1998 ACM SIGMOD International Conference on Man-
agement of Data (Seattle, Washington, USA) (SIGMOD ’98). Asso-
ciation for Computing Machinery, New York, NY, USA, 390––401.
https://doi.org/10.1145/276304.276339

[30] Google, Inc. 2021. Google Cloud Hypervisor. Retrieved January 1,
2020 from https://github.com/cloud-hypervisor/cloud-hypervisor

[31] Kyle C. Hale and Peter A. Dinda. 2014. Guarded Modules: Adaptively
Extending the VMM’s Privilege Into the Guest. In Proceedings of the
11𝑡ℎ International Conference on Autonomic Computing (Philadelphia,
PA) (ICAC ’14). USENIX Association, 85–96. https://www.usenix.

15

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2555
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2555
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2935
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2935
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-18342
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-18342
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6056
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6056
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3156
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3156
https://nvd.nist.gov/vuln/detail/CVE-2017-2505
https://sourceware.org/newlib/
https://sourceware.org/newlib/
https://duktape.org/
https://www.postgresql.org/docs/13/external-pl.html
https://www.postgresql.org/docs/13/external-pl.html
https://github.com/Solo5/solo5
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://doi.org/10.1145/3276488
https://doi.org/10.1145/945445.945462
https://doi.org/10.1145/2465351.2465375
https://doi.org/10.1145/800217.806609
https://doi.org/10.1145/800217.806609
https://www.usenix.org/conference/nsdi-08/wedge-splitting-applications-reduced-privilege-compartments
https://www.usenix.org/conference/nsdi-08/wedge-splitting-applications-reduced-privilege-compartments
https://doi.org/10.1145/3342195.3392698
https://doi.org/10.1145/3342195.3392698
https://doi.org/10.1145/3037697.3037725
https://developers.cloudflare.com/workers/learning/how-workers-works
https://developers.cloudflare.com/workers/learning/how-workers-works
https://doi.org/10.1145/2694344.2694386
https://doi.org/10.1145/3373376.3378512
https://doi.org/10.1145/3373376.3378512
https://doi.org/10.1145/3445814.3446728
https://doi.org/10.1145/3445814.3446728
http://www.usenix.org/conference/atc19/presentation/ghosn
https://doi.org/10.1145/276304.276339
https://github.com/cloud-hypervisor/cloud-hypervisor
https://www.usenix.org/conference/icac14/technical-sessions/presentation/hale
https://www.usenix.org/conference/icac14/technical-sessions/presentation/hale

EuroSys ’22, April 5–8, 2022, RENNES, France N. Wanninger, J. Bowden, K. Shetty, A. Garg, and K. Hale

org/conference/icac14/technical-sessions/presentation/hale
[32] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John

Criswell, Michael L. Scott, Kai Shen, and Mike Marty. 2019. Hodor:
Intra-Process Isolation for High-Throughput Data Plane Libraries. In
Proceedings of the USENIX Annual Technical Conference (USENIX
ATC ’19). USENIX Association, Renton, WA, 489–504. https://www.
usenix.org/conference/atc19/presentation/hedayati-hodor

[33] Terry Ching-Hsiang Hsu, Kevin Hoffman, Patrick Eugster, and Mathias
Payer. 2016. Enforcing Least Privilege Memory Views for Multi-
threaded Applications. In Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security (Vienna, Austria) (CCS

’16). Association for Computing Machinery, New York, NY, USA, 393–
–405. https://doi.org/10.1145/2976749.2978327

[34] Galen C. Hunt and James R. Larus. 2007. Singularity: Rethinking the
Software Stack. SIGOPS Operating Systems Review 41, 2 (April 2007),
37–49. https://doi.org/10.1145/1243418.1243424

[35] Bumjin Im, Fangfei Yang, Chia-Che Tsai, Michael LeMay, Anjo
Vahldiek-Oberwagner, and Nathan Dautenhahn. 2021. The Endok-
ernel: Fast, Secure, and Programmable Subprocess Virtualization.
arXiv:2108.03705 [cs.CR]

[36] Intel Corporation 2017. Intel® Software Guard Extensions SDK for
Linux OS. Intel Corporation.

[37] Intel Corporation 2021. Intel® 64 and IA-32 Architectures Software
Developer’s Manual Volume 3 (3A, 3B & 3C): System Programming
Guide. Intel Corporation.

[38] Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacenter
RPCs can be General and Fast. In Proceedings of the 16th USENIX
Symposium on Networked Systems Design and Implementation (Boston,
MA) (NSDI ’19). USENIX Association, 1–16. https://www.usenix.
org/conference/nsdi19/presentation/kalia

[39] Antti Kantee. 2012. The Design and Implementation of the Anykernel
and Rump Kernels. Ph.D. Dissertation. Aalto University, Helsinki,
Finland.

[40] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El,
Don Marti, and Vlad Zolotarov. 2014. OSv—Optimizing the Operating
System for Virtual Machines. In Proceedings of the 2014 USENIX
Annual Technical Conference (USENIX ATC ’14).

[41] Ricardo Koller and Dan Williams. 2017. Will Serverless End the Domi-
nance of Linux in the Cloud?. In Proceedings of the 16𝑡ℎ Workshop on
Hot Topics in Operating Systems (Whistler, BC, Canada) (HotOS XVI).
Association for Computing Machinery, New York, NY, USA, 169–173.
https://doi.org/10.1145/3102980.3103008

[42] Simon Kuenzer, Vlad-Andrei Bădoiu, Hugo Lefeuvre, Sharan San-
thanam, Alexander Jung, Gaulthier Gain, Cyril Soldani, Costin Lupu,
Ştefan Teodorescu, Costi Răducanu, Cristian Banu, Laurent Mathy, Răz-
van Deaconescu, Costin Raiciu, and Felipe Huici. 2021. Unikraft: Fast,
Specialized Unikernels the Easy Way. In Proceedings of the 16𝑡ℎ Eu-
ropean Conference on Computer Systems (Online Event, United King-
dom) (EuroSys ’21). Association for Computing Machinery, New York,
NY, USA, 376–394. https://doi.org/10.1145/3447786.3456248

[43] Hsuan-Chi Kuo, Dan Williams, Ricardo Koller, and Sibin Mohan. 2020.
A Linux in Unikernel Clothing. In Proceedings of the 15𝑡ℎ European
Conference on Computer Systems (Heraklion, Greece) (EuroSys ’20).
Association for Computing Machinery, New York, NY, USA. https:
//doi.org/10.1145/3342195.3387526

[44] John Lange, Kevin Pedretti, Trammell Hudson, Peter Dinda, Zheng
Cui, Lei Xia, Patrick Bridges, Andy Gocke, Steven Jaconette, Mike
Levenhagen, and Ron Brightwell. 2010. Palacios and Kitten: New
High Performance Operating Systems for Scalable Virtualized and
Native Supercomputing. In Proceedings of the 24𝑡ℎ IEEE International
Parallel and Distributed Processing Symposium (IPDPS’10).

[45] Stefan Lankes, Simon Pickartz, and Jens Brietbart. 2017. A Low Noise
Unikernel for Extreme-Scale Systems. In Proceedings of the 30𝑡ℎ

International Conference on Architecture of Computing Systems (ARCS
’17).

[46] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe,
Pierre-Louis Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche,
David Eyers, Rüdiger Kapitza, Christof Fetzer, and Peter Pietzuch.
2017. Glamdring: Automatic Application Partitioning for Intel
SGX. In Proceedings of the USENIX Annual Technical Confer-
ence (USENIX ATC ’17). USENIX Association, Santa Clara, CA,
285–298. https://www.usenix.org/conference/atc17/technical-
sessions/presentation/lind

[47] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown: Reading
Kernel Memory from User Space. In Proceedings of the 27𝑡ℎ USENIX
Security Symposium (USENIX Security ’18). USENIX Association,
Baltimore, MD, 973–990. https://www.usenix.org/conference/
usenixsecurity18/presentation/lipp

[48] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak
Garg, Bobby Bhattacharjee, and Peter Druschel. 2016. Light-Weight
Contexts: An OS Abstraction for Safety and Performance. In Proceed-
ings of the 12𝑡ℎ USENIX Symposium on Operating Systems Design
and Implementation (Savannah, GA) (OSDI ’16). USENIX Associa-
tion, 49–64. https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/litton

[49] Conghao Liu and Kyle C. Hale. 2019. Towards a Practical Ecosystem of
Specialized OS Kernels. In Proceedings of the International Workshop
on Runtime and Operating Systems for Supercomputers (Phoenix, AZ,
USA) (ROSS ’19). Association for Computing Machinery, New York,
NY, USA, 3–9. https://doi.org/10.1145/3322789.3328742

[50] Lei Liu, Xinwen Zhang, Vuclip Inc, Guanhua Yan, and Songqing Chen.
2012. Chrome extensions: Threat analysis and countermeasures. In In
19th Network and Distributed System Security Symposium (NDSS ’12.

[51] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia. 2015.
Thwarting Memory Disclosure with Efficient Hypervisor-Enforced
Intra-Domain Isolation. In Proceedings of the 22𝑛𝑑 ACM SIGSAC Con-
ference on Computer and Communications Security (Denver, Colorado,
USA) (CCS ’15). Association for Computing Machinery, New York,
NY, USA, 1607––1619. https://doi.org/10.1145/2810103.2813690

[52] locust [n.d.]. Locust: An open source load testing tool. Retrieved
February 20, 2022 from https://locust.io/

[53] Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas
Gazagnaire, David Sheets, Dave Scott, Richard Mortier, Amir
Chaudhry, Balraj Singh, Jon Ludlam, Jon Crowcroft, and Ian
Leslie. 2015. Jitsu: Just-In-Time Summoning of Unikernels.
In Proceedings of the 12𝑡ℎ USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’15). Oakland, CA,
559–573. https://www.usenix.org/conference/nsdi15/technical-
sessions/presentation/madhavapeddy

[54] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,
and Jon Crowcroft. 2013. Unikernels: Library Operating Systems
for the Cloud. In Proceedings of the 18𝑡ℎ International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’13). 461–472.

[55] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon
Kuenzer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici.
2017. My VM is Lighter (and Safer) Than Your Container. In Pro-
ceedings of the 26𝑡ℎ Symposium on Operating Systems Principles
(Shanghai, China) (SOSP ’17). Association for Computing Machinery,
New York, NY, USA, 218–233. https://doi.org/10.1145/3132747.
3132763

[56] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam
Datta, Virgil Gligor, and Adrian Perrig. 2010. TrustVisor: Efficient TCB
Reduction and Attestation. In Proceedings of the IEEE Symposium on
Security and Privacy (Oakland, CA, USA) (S&P ’10). IEEE, 143–158.
https://doi.org/10.1109/SP.2010.17

16

https://www.usenix.org/conference/icac14/technical-sessions/presentation/hale
https://www.usenix.org/conference/atc19/presentation/hedayati-hodor
https://www.usenix.org/conference/atc19/presentation/hedayati-hodor
https://doi.org/10.1145/2976749.2978327
https://doi.org/10.1145/1243418.1243424
https://arxiv.org/abs/2108.03705
https://www.usenix.org/conference/nsdi19/presentation/kalia
https://www.usenix.org/conference/nsdi19/presentation/kalia
https://doi.org/10.1145/3102980.3103008
https://doi.org/10.1145/3447786.3456248
https://doi.org/10.1145/3342195.3387526
https://doi.org/10.1145/3342195.3387526
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lind
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lind
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/litton
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/litton
https://doi.org/10.1145/3322789.3328742
https://doi.org/10.1145/2810103.2813690
https://locust.io/
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/madhavapeddy
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/madhavapeddy
https://doi.org/10.1145/3132747.3132763
https://doi.org/10.1145/3132747.3132763
https://doi.org/10.1109/SP.2010.17

Isolating Functions at the Hardware Limit with Virtines EuroSys ’22, April 5–8, 2022, RENNES, France

[57] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K. Reiter,
and Hiroshi Isozaki. 2008. Flicker: An Execution Infrastructure for
Tcb Minimization. In Proceedings of the 3𝑟𝑑 ACM SIGOPS European
Conference on Computer Systems (Glasgow, Scotland UK) (EuroSys
’08). Association for Computing Machinery, New York, NY, USA, 315–
328. https://doi.org/10.1145/1352592.1352625

[58] Vikram Narayanan, Abhiram Balasubramanian, Charlie Jacobsen,
Sarah Spall, Scott Bauer, Michael Quigley, Aftab Hussain, Abdul-
lah Younis, Junjie Shen, Moinak Bhattacharyya, and Anton Burtsev.
2019. LXDs: Towards Isolation of Kernel Subsystems. In Proceed-
ings of the USENIX Annual Technical Conference (USENIX ATC ’19).
USENIX Association, Renton, WA, 269–284. https://www.usenix.
org/conference/atc19/presentation/narayanan

[59] NVIDIA Corporation 2020. CUDA C++ Programming Guide—Version
11.1.0. NVIDIA Corporation. Accessed: 2020-10-01.

[60] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Har-
ter, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2018.
SOCK: Rapid Task Provisioning with Serverless-Optimized Contain-
ers. In Proceedings of the USENIX Annual Technical Conference
(Boston, MA, USA) (USENIX ATC ’18). USENIX Association, 57—-
69. https://www.usenix.org/conference/atc18/presentation/oakes

[61] Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Binoy
Ravindran. 2019. A Binary-Compatible Unikernel. In Proceedings of
the 15𝑡ℎ ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (Providence, RI, USA) (VEE ’19). Association
for Computing Machinery, New York, NY, USA, 59–73. https://doi.
org/10.1145/3313808.3313817

[62] openwhisk [n.d.]. Apache OpenWhisk. https://openwhisk.apache.
org/. Accessed 2021-02-19.

[63] oracleudf [n.d.]. Oracle Database SQL Reference: User-Defined Func-
tions. https://docs.oracle.com/cd/B19306_01/server.102/b14200/
functions231.htm. Accessed 2021-05-01.

[64] Taemin Park, Karel Dhondt, David Gens, Yeoul Na, Stijn Volckaert, and
Michael Franz. 2020. NoJITsu: Locking Down JavaScript Engines. In
Proceedings of the Network and Distributed System Security Symposium
(San Diego, CA, USA) (NDSS ’20).

[65] Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky,
and Galen C. Hunt. 2011. Rethinking the Library OS from the Top
Down. In Proceedings of the 16𝑡ℎ International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS ’11). 291–304.

[66] Chris Rohlf and Yan Ivnitskiy. 2011. Attacking clientside JIT compilers.
Black Hat USA (2011).

[67] Rusty Russell. 2008. Virtio: Towards a de-Facto Standard for Virtual
I/O Devices. SIGOPS Operating Systems Review 42, 5 (July 2008),
95–103. https://doi.org/10.1145/1400097.1400108

[68] David Schrammel, Samuel Weiser, Richard Sadek, and Stefan Man-
gard. 2022. Jenny: Securing Syscalls for PKU-based Memory Iso-
lation Systems. In Proceedings of the 31𝑠𝑡 USENIX Security Sym-
posium (Boston, MA, USA) (USENIX Security ’22). USENIX As-
sociation. https://www.usenix.org/conference/usenixsecurity22/
presentation/schrammel

[69] sgx 2020. Intel® Software Guard Extensions. https://software.
intel.com/content/www/us/en/develop/topics/software-guard-
extensions.html. Accessed: 2020-08-06.

[70] Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight Isolation
for Efficient Stateful Serverless Computing. In Proceedings of the
USENIX Annual Technical Conference (USENIX ATC ’20). USENIX
Association, 419–433. https://www.usenix.org/conference/atc20/
presentation/shillaker

[71] Michael M. Swift, Steven Martin, Henry M. Levy, and Susan J. Eg-
gers. 2002. Nooks: An Architecture for Reliable Device Drivers. In
Proceedings of the 10𝑡ℎ Workshop on ACM SIGOPS European Work-
shop (Saint-Emilion, France) (EW ’10). Association for Computing
Machinery, New York, NY, USA, 102–107. https://doi.org/10.1145/
1133373.1133393

[72] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael
Sammler, Peter Druschel, and Deepak Garg. 2019. ERIM: Se-
cure, Efficient In-process Isolation with Protection Keys (MPK). In
Proceedings of the 28𝑡ℎ USENIX Security Symposium (USENIX
Security ’19). USENIX Association, Santa Clara, CA, 1221–
1238. https://www.usenix.org/conference/usenixsecurity19/
presentation/vahldiek-oberwagner

[73] Tim Wagner. 2014. Understanding Container Reuse in AWS Lambda.
Retrieved May 26, 2020 from https://aws.amazon.com/de/blogs/
compute/container-reuse-in-lambda/

[74] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L.
Graham. 1993. Efficient Software-Based Fault Isolation. In Pro-
ceedings of the 14𝑡ℎ ACM Symposium on Operating Systems Prin-
ciples (Asheville, North Carolina, USA) (SOSP ’93). Association
for Computing Machinery, New York, NY, USA, 203–216. https:
//doi.org/10.1145/168619.168635

[75] Dan Williams and Ricardo Koller. 2016. Unikernel Monitors:
Extending Minimalism Outside of the Box. In Proceedings of
the 8𝑡ℎ USENIX Workshop on Hot Topics in Cloud Computing
(Denver, CO) (HotCloud ’16). USENIX Association, USA, 71–
76. https://www.usenix.org/conference/hotcloud16/workshop-
program/presentation/williams

[76] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler,
Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and
Mario Wolczko. 2013. One VM to Rule Them All. In Proceedings of
the 2013 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Indianapolis, Indi-
ana, USA) (Onward! 2013). Association for Computing Machinery,
New York, NY, USA, 187–204. https://doi.org/10.1145/2509578.
2509581

17

https://doi.org/10.1145/1352592.1352625
https://www.usenix.org/conference/atc19/presentation/narayanan
https://www.usenix.org/conference/atc19/presentation/narayanan
https://www.usenix.org/conference/atc18/presentation/oakes
https://doi.org/10.1145/3313808.3313817
https://doi.org/10.1145/3313808.3313817
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions231.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions231.htm
https://doi.org/10.1145/1400097.1400108
https://www.usenix.org/conference/usenixsecurity22/presentation/schrammel
https://www.usenix.org/conference/usenixsecurity22/presentation/schrammel
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://www.usenix.org/conference/atc20/presentation/shillaker
https://www.usenix.org/conference/atc20/presentation/shillaker
https://doi.org/10.1145/1133373.1133393
https://doi.org/10.1145/1133373.1133393
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://aws.amazon.com/de/blogs/compute/container-reuse-in-lambda/
https://aws.amazon.com/de/blogs/compute/container-reuse-in-lambda/
https://doi.org/10.1145/168619.168635
https://doi.org/10.1145/168619.168635
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/williams
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/williams
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2509578.2509581

EuroSys ’22, April 5–8, 2022, RENNES, France N. Wanninger, J. Bowden, K. Shetty, A. Garg, and K. Hale

A Artifact Appendix
A.1 Abstract
This artifact comprises our Wasp 𝜇hypervisor, our Clang
compiler extensions, our LLVM pass, the experimental code,
scripts, and data used for the paper, as well as benchmarks
and example code. Users should be able to re-create our ex-
periments and compare results on a broad range of hardware.
In our Github repo6 we have detailed instructions on how to
run Wasp, and compile code with virtine support.

A.2 Description & Requirements
A.2.1 How to access. All code for virtines and Wasp is
organized under the Virtines Github organization. This can be
accessed at https://github.com/virtines. The primary repos-
itory that will be used for this Artifact is Wasp, which is at
https://github.com/virtines/wasp. The DOI for our artifact
is 10.5281/zenodo.6350453.

A.2.2 Hardware dependencies. Wasp currently supports
x64 hardware, including AMD and Intel. Hardware virtual-
ization extensions are a requirement (SVM on AMD, VT-x
on Intel), so hardware from the last decade or so should work
fine.

A.2.3 Software dependencies. The primary dependence
is on a hosted hypervisor framework (namely, kvm on Linux).
While early versions of Wasp ran on Hyper-V, the port of
our compiler extensions and benchmarks is not yet complete,
so for this artifact we focus on Linux. We also rely on the
following packages and libraries:

• netwide assembler (nasm)
• curl development libraries (libcurl-dev on Debian-

based distros)
• Clang C compiler (version 10 or newer)
• LLVM and development headers (llvm and llvm-dev)
• cmake

• Virtual environments for Python3 (python3.8-venv)
It is possible to run Wasp in a nested virtualization en-

vironment (as long as nested virtualization with kvm is en-
abled), but we recommend running on a bare-metal machine
to get reasonable performance. More details on the build
prerequisites can be found in the instructions in the repo
(README.md).

A.2.4 Benchmarks. All relevant benchmarks are included
in the repo. Experimental results are reproduced with these
benchmarks as described below.

A.3 Set-up
We recommend evaluators follow the guidance in our repo
(README.md). To build Wasp, see the sections titled “En-
vironment Setup,” “Prerequisites,” and “Building and In-
stalling.” As described there, we recommend an environment
6https://github.com/virtines/wasp

like Cloudlab or Chameleon Cloud. We provide a Cloudlab
profile and instructions for Chameleon in our README doc-
ument.

A.4 Evaluation workflow
Once Wasp is set up, reproduction of experimental results is a
mostly automated process, though evaluators are free to focus
on individual experiments. Before that, to ensure that Wasp
is functional once built, users can run make smoketest to
ensure everything is working properly. See our README
("Running Virtine Tests") for more detail. Once Wasp is func-
tional, experimental results can be easily generated.

A.4.1 Major Claims.
• (C1): The core components of virtual context creation

comprise only a few tens of thousands of cycles. We
show this in experiment (E1) described in Section 4.2,
whose results are shown in Table 1.

• (C2): The latency to run a function in different pro-
cessor modes can vary (e.g., 16-bit mode is cheaper
on some microarchitectures), presenting an opportu-
nity for optimization when building virtual contexts. We
show this in experiment (E2) in Section 4.2 of the paper,
whose results are depicted in Figure 3.

• (C3): A runtime system that boots a basic server in a
minimal execution environment can achieve response
times <1ms, even without optimizations. We show this
in experiment (E3) in Section 4.2 of the paper, whose
results are shown in Figure 4.

• (C4): Virtual context creation latencies with Wasp ap-
proach the hardware limit of the vmrun/vmcall instruc-
tion by employing optimizations. We show this in exper-
iment (E4) in Section 5.2 of the paper (Figure 8). Note
that we see Figure 2 as a subset of the results in Figure
8, so we elide it in the artifact.

• (C5): Virtine creation overheads can be amortized with
roughly 100𝜇s of work. In finer-grained scenarios, snap-
shotting can reduce overheads significantly, pushing
the amortization point down by about 10×. We show
this in experiment (E5) in Section 6.1 of the paper (Fig-
ure 11).

• (C6): Once virtine image size reaches around 2MB,
start-up latency becomes bottlenecked by memory band-
width. We show this in experiment (E6) in Section 6.2
of the paper (Figure 12).

• (C7): An HTTP server using our virtine compiler exten-
sions experiences a less than 20% drop in throughput
relative to a native environment. We show this in exper-
iment (E7) in Section 6.3 of the paper (Figure 13).

• (C8): Virtines can be integrated with an off-the-shelf
Javascript engine, with acceptable (< 1.5×) slow-downs
(∼2×). Snapshotting improves performance when envi-
ronment setup in the virtual context is non-trival. We

18

https://github.com/virtines
https://github.com/virtines/wasp
https://github.com/virtines/wasp

Isolating Functions at the Hardware Limit with Virtines EuroSys ’22, April 5–8, 2022, RENNES, France

show this in experiment (E8) in Section 6.5 of the paper
(Figure 14).

A.4.2 Experiments. To re-run all experiments, you can sim-
ply run make artifacts.tar as described in our README.
This will take roughly five minutes to run to completion
and generate data and plots, which can then be found in
artifacts.tar. Once the results are generated, they can
be compared with the data from the paper (which can be also
be found in data_example/gold/). We have also provided
data we have generated on many other machines. These can
also be found in data_example/*; the machine and soft-
ware environment descriptions can be found in
data_example/README.md.

We outline individual experiments below.

Experiment (E1): [Boot Breakdown] [1 sec.]: This experi-
ment evaluates the various components that comprise booting
a virtual context. Use this to evaluate claim (C1).

[How to] Run make figure1_data.
[Results] The results will appear in

data/figure1_data.csv. You should see that the total av-
erage cycle counts less than ∼100K cycles (ignoring the first
run). The transition to protected mode (prot) and the identity
mapping (id map) will be the most expensive components
of the boot process.

Experiment (E2): [Mode latency] [5 sec.]: This experiment
evaluates the time to run a recursive implementation of fib(20)
in 16-bit mode, 32-bit (protected) mode, and 64-bit (long)
mode. Use this to evaluate claim (C2).

[How to] Run make fig3.pdf.
[Results] You can see the results in fig3.pdf. In most

machines the time to run the function will vary with processor
modes, but on some there is little difference. The point here is
that there is room for a virtine compiler to leverage hardware
knowledge to optimize code generated for virtine context.

Experiment (E3): [Echo server] [5 sec.]: This experiment
shows that with a minimal virtual exection context, an HTTP
server can achieve response times <1ms. Use this to evaluate
claim (C3).

[How to] Run make fig4.pdf.
[Results] You can see the results in fig4.pdf. You should

see that the time to get an HTTP response should be some-
where between 100K and 500K cycles.

Experiment (E4): [Context creation] [5 sec.]: This exper-
iment shows that Wasp can achieve start-up latencies close
to the hardware limit (the vmrun/vmcall instruction on x86
hardware). Use this to evaluate claim (C4).

[How to] Run make fig8.pdf.
[Results] You can see the results in fig8.pdf. You should

see that the “Wasp+C” and “Wasp+CA” bars appear relatively

close to the vmrun bar and outperform pthreads.

Experiment (E5): [Virtine overheads] [30 sec.]: This ex-
periment demonstrate how much computation is necessary
to amortize virtine creation overheads. Use this to evaluate
claim (C5).

[How to] Run make fig11.pdf.
[Results] You can see the results in fig11.pdf. You should

see the bars even out in the 100𝜇s range, indicating that 100𝜇s
of computation are necessary to amortize creation overheads.
Snapshotting should significantly improve call latency for
smaller image sizes.

Experiment (E6): [Image size impact] [3 sec.]: This ex-
periment demonstrates the impact of image size on virtine
creation latency. Use this to evaluate claim (C6).

[How to] Run make fig12.pdf.
[Results] You can see the results in fig12.pdf. You should

see a knee in the curve somewhere around 1-2MB. This is
where virtine creation is becoming memory bandwidth bound.
Where exactly the knee occurs depends on the memory copy
bandwidth of the machine.

Experiment (E7): [HTTP server] [1 min.]: This shows
the latency and throughput of serving HTTP requests in a
virtine (with and without snapshotting optimization) vs. native
execution. Use this to evaluate claim (C7).

[How to] Run make fig13_lat.pdf then
make fig13_tput.pdf.

[Results] You can see the results in fig13_lat.pdf and
fig13_tput.pdf. Expect to see a little more than 2× in-
crease in latency and 2× drop in throughput relative to native.
Snapshotting may actually reduce performance on this exper-
iment on machines with limited memory bandwidth. Most of
the performance drop is caused by hypercall interactions.

Experiment (E8): [Javascript virtines] [3 sec.]: This shows
the slowdown of launching Javascript virtines with various
optimizations. Use this to evaluate claim (C8).

[How to] Run make fig14.pdf.
[Results] You can see the results in fig14.pdf. You should

see that snapshotting has a real effect given the amount of run-
time initialization that takes place in the Duktape JavaScript
engine. The slowdown for virtines without optimizations (the
leftmost bar) should be in the 1.5–2× range.

A.5 Notes on Reusability
If you would like to explore using embedded Wasp with your
programs, we provide additional guidance in the “Embed-
ding Wasp” section of our repo’s README. Developers can
interact with the runtime library directly using our API or
indirectly using our compiler extensions.

19

	Abstract
	1 Introduction
	2 Virtines
	3 Design
	3.1 Safety Objectives
	3.2 Threat Model
	3.3 Achieving Safety Objectives

	4 Minimizing Virtine Costs
	4.1 Experimental Setup
	4.2 Measuring Startup Costs

	5 Implementation
	5.1 Wasp
	5.2 Wasp Caching and Snapshotting
	5.3 C Language Extensions
	5.4 Execution Environments

	6 Evaluation
	6.1 Startup Latencies with Language Extensions
	6.2 Impact of Image Size
	6.3 Host Interaction Costs
	6.4 Integration with Library Code
	6.5 Virtines for Managed Languages

	7 Discussion
	7.1 Implications
	7.2 Limitations
	7.3 Other use cases

	8 Related Work
	9 Conclusions and Future Work
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow
	A.5 Notes on Reusability

